
DOI: http://dx.doi.org/10.33238/ReBECEM.2019.v.3.n.3.23846 

ReBECEM, Cascavel, (PR), v.3, n.3, p. 700-713, dez. 2019       700 

 

HOW DOES A FRACTION GET ITS NAME?1 

 

COMO UMA FRAÇÃO RECEBE SEU NOME? 
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Abstract: Philosophical and cultural perspectives shape how a fraction is named and defined. In turn, 

these perspectives have consequences for learners' conceptualization of fractions. We examine historical 

foundations of two perspectives of what are fractions—partitioning and measuring—and how these views 

influence fraction knowledge. For the dominant perspective, partitioning, we indicate how its approach to 

what is a fraction that discretizes objects and its well-meaning visual correlates cause learners a host of 

perceptual difficulties. Based on the human cultural and social practice of measuring continuous quantities, 

we then offer an alternative understanding of what is a fraction and illustrate the promise of this view for 

fraction knowledge. We introduce pedagogical tools, Cuisenaire rods, and illustrate how they can be used 

to implement a measuring perspective to comprehending properties and a definition of fractions. We end 

by sketching how to initiate a measuring perspective in a mathematics classroom. 
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Resumo: Perspectivas filosóficas e culturais moldam como uma fração é nomeada e definida. Por sua 

vez, essas perspectivas têm consequências para a conceitualização de frações dos estudantes. Examinamos 

os fundamentos históricos de duas perspectivas do que são frações—particionamento e medição—e como 

essas visões influenciam o conhecimento das frações. Para a perspectiva dominante, partição, indicamos 

como sua abordagem ao que é uma fração que discretiza objetos e seu correlato visual bem-intencionado 

causa aos alunos uma série de dificuldades perceptivas. Com base na prática cultural e social humana de 

medir quantidades contínuas, oferecemos um entendimento alternativo do que é uma fração e ilustramos a 

promessa dessa visão para o conhecimento da fração. Introduzimos ferramentas pedagógicas, varas 

Cuisenaire e ilustramos como elas podem ser usadas para implementar uma perspectiva de medição para 

compreender propriedades e uma definição de frações. Terminamos esboçando como iniciar uma 

perspectiva de medição em uma sala de aula de matemática. 
 

Palavras-chave: Frações; Gattegno; Medição; Partição; Frações unitárias. 

 

1 Introduction 

 

A response to the question—how does a fraction get its name? — may seem 

unproblematic and straightforward. A schooled individual might reply, “a fraction is parts 

of a whole.” Indeed, this is the viewpoint found in textbooks approved for schools 

(SCHEFFER; POWELL, 2019) and appears in other authoritative sources such as 
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physical dictionaries and Internet sites. Nevertheless, as simple as a fraction may appear, 

ideas about what it is and how to define it divide into two distinct perspectives: 

partitioning and measuring. The first perspective emphasizes counting discrete objects 

and the second comparing continuous quantities. Each view has its historical origin and 

epistemological consequence. What follows is a brief description of the birth of each 

perspective and how each influences fraction knowledge. Afterward, as the partitioning 

perspective is well known, the measuring perspective’s influence on fraction 

understanding is more extensively described. 

 

2 Partitioning Perspective 

 

The current dominant understanding of how a fraction gets its name is rooted in a 

relatively recent development in the history of mathematics. This historical development 

occurred at the beginning of the 20th-century and is based on a philosophical view 

championed by the influential German mathematician, David Hilbert, called formalism. 

Formalists believed that all mathematics can be formulated based on rules for 

manipulating formulas without any reference to the meanings of the formulas or practical 

contexts. That is, formalists contend that the primary objects of mathematical thought are 

the mathematical symbols themselves and not any meanings ascribed to them (SIMONS, 

2009). This philosophical belief about the nature of mathematics permeates mathematics 

education. One consequence of formalism is how rational numbers, especially fractions, 

are defined (SCHMITTAU, 2003). A formalist definition of rational numbers is the 

following: Rational numbers represented as common fractions are bipartite symbols that 

express quotients or ratios of two integers, 𝑎/𝑏, such that 𝑎 and 𝑏 are integers and 𝑏 ≠ 0. 

In the expression, 𝑎/𝑏, 𝑎 is called the dividend or numerator and 𝑏 the divisor or 

denominator. 

That is a formal definition of a fraction. However, as such a definition would make 

little sense to children, mathematics educators devised visual correlates for fractions that 

involve partitioning everyday items (DAVYDOV; TSVETKOVICH, 1991; 

SCHMITTAU, 2003) such as pizzas, chocolate candy bars, and chestnuts. After 

equipartitioning a pizza or chocolate bar or identifying a subset of a collection of 

chestnuts, a faction’s denominator represents a count of the equipartitioned parts or the 
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collection, and separately the numerator is a count of the parts of interest or the identified 

subset (Figure 1). 

 

Figure 1: Three partitioning representations of fractions: (a) A pizza   that was divided into four parts, 

now with the three parts or 3/4 of it shown. (b) A multi-sectioned chocolate bar equipartitioned into three 

parts with 1/3 and 2/3 of it indicated. (c) A collection of 10 chestnuts with a subset of five chestnuts 

identified to show 5/10 

Source: Author’s arquive 

 

These visual representations supply the formal definition of a fraction with 

quotidian interpretations. Though such meanings contradict the formalist project, they 

nevertheless do provide children with visual access to the formalist definition of a fraction 

and its bipartite symbol, 𝑎/𝑏. The meaning of the visual depiction involves dividing an 

area into discrete equal pieces or identifying a subset of a collection of objects and then a 

two-fold counting and recording process: (1) the number of equal parts or objects and (2) 

the number of parts of interest or objects in an identified subset. This view of how a 

fraction gets its name can be called a partitioning perspective and relies on counting. 

For students, this perspective entails cognitive difficulties. One conceptual 

challenge is that the equipartitioning an object does not bestow meaning to an improper 

fraction, a fraction whose numerator is larger than its denominator. Mack (1993) 

documents that students sense improper fractions such as 4/3 to be meaningless since 

one cannot have 4 parts of an object that is divided into 3 parts. Another cognitive issue 

arises from an instructional emphasis on the two-part structure of a fraction’s symbolic 

form. Rather than communicating that a fraction holistically is a single magnitude, the 

instructional focus suggests to students that a fraction is composed of two distinct 

numerical parts and primes them to apply inappropriately whole number properties to 

evaluate fractions. Students confound the following: 

1. the number of pieces in a partition with the size of each piece, so 1/4 is 

larger than 1/3 since 4 is larger than 3; 
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2. the addition of fractions with adding whole numbers: 1 2⁄ + 1 3⁄ = 2 5⁄ ; 

and 

3. the requirement for equal parts, “counting noncongruent parts to name a 

fraction one third in a circle that is partitioned into a half and two fourths” (NI; ZHOU, 

2005, p. 29, original emphasis). 

These three conceptual mistakes, as well as students’ documented reluctance to 

view improper fractions as meaningful, result from how the partitioning perspective 

defines a fraction, parts of a single equipartitioned whole. 

 

3 Measuring Perspective 

 

There is another view of how a fraction derives its name. Rather than 

philosophical, this perspective is cultural. This alternative view of how fractions emerged 

is based on an understanding of the human social practice of comparing or measuring 

continuous quantities. More than four millennia ago, in Mesopotamian and Egyptian 

cultures, along the Tigris, Euphrates and Nile rivers, with the birth of agriculture, the 

material conditions introduced the need to measure quantities of land, crops, seeds, and 

so forth and to record the measures (CLAWSON, 1994/2003; STRUIK, 1948/1967). To 

measure the distances of land, ancient Egyptian surveyors stretched ropes in which the 

length between two knots represented a unit of measure. From this social practice arose 

simultaneously geometry and fractional numbers (ALEKSANDROV, 1963; CARAÇA, 

1951; ROQUE, 2012). That is, fractions emerged as individuals wanted to know, for 

instance, the extent of a distance 𝑑, in comparison to a unit of measure 𝑢. There are two 

cases. Either 𝑑 equals an exact multiple 𝑢, or it does not, which occasions a need for 

fractional numbers. In what follows, we introduce a pedagogical tool to help us examine 

each of the two cases from a measuring perspective. 
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Figure 2: Cuisenaire rods 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s arquive 

 

In the first case, 𝑑 equals exactly 𝑘 units of measure 𝑢, where 𝑘 is a whole number, 

then 𝑑 = 𝑘 × 𝑢. To illustrate this expression, consider the Cuisenaire rods (Figure 2). 

They are measurable quantities that come in ten different colors and sizes. The colors are 

white, red, green, purple, yellow, dark green, ebony, tan, blue, and orange. In terms of 

sizes, the length of each different color rod in sequence increases by one centimeter, 

starting with a cube whose length is one centimeter, where rods of the same length have 

the same color and vice versa. These materials can be used to instantiate a measuring 

perspective for fraction knowledge, as a particular relation of quantities (GATTEGNO, 

1974/2010).3 On this point, Gattegno (1974/2010), with reference to Cuisenaire rods, 

summarizes the role of measurement in elementary mathematics: 

Measure, in the work with the rods, is borrowed from physics and introduces 

counting by the back door, since it is necessary to know how many times the 

unit has been used to associate a number with a given length. But measure is 

also the source of fractions and mixed numbers, and serves later to introduce 

real numbers. Thus measure is a more powerful tool than counting, which it 

uses as a generator of mathematics. Counting … can be interpreted again as 

being a measure with white rods. Measure is naturally also an interpretation of 

iteration …. (p. 196, original emphasis). 

 

The Cuisenaire rods have many attributes. One attribute is color, and another is 

length. Implicit in Gattegno’s statement is that length is the attribute of interest and to 

measure. Consider a tan rod and select as the unit of measure the red rod. What is the tan 

rod’s length in units of red rods? Figure 3a shows that, reading from left to right, the 

length of one of the tan rods equals the length of four of the red rods. This statement 

reveals a comparative relation between the two quantities, tan and red rods. The relation 

                                                           
3 Other researchers have developed and investigated instructional approaches based on the measurement of 

continuous quantities. See, for example, the work of Brousseau, Brousseau, and Warfield (2004); Carraher 

(1996); Davydov and Tsvetkovich (1991); Dougherty and Venenciano (2007); Powell (2019); Venenciano 

and Heck (2016); and Venenciano, Slovin, and Zenigami (2015). 
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is multiplicative as four of the red rods equals one of the tan rods. This particular 

multiplicative comparison between the two quantities can be stated differently. Among 

the possibilities, here are three verbal expressions equivalent to the original statement: 

1. One tan rod measures four red rods. 

2. When measured by red rods, the tan rod is equivalent to four red rods. 

3. One tan rod measured by red rods equals four. 

 

Figure 3: (a) The tan rod equals four red rods. (b) The red rod is one-fourth of the tan rod. (c) Three red 

rods are three-fourths of the tan rod 

 

 

 

 

 

 

 

 

 

 

Source: Author’s arquive 

 

Those are alternative ways to talk about the length of a tan rod when the red rod 

is the unit of measure. Now, if the length of a tan rod is the unit of measure, what is the 

red rod’s length in units of tan rods? As the length of four red rods equals the length of a 

tan rod, then in Figure 3b, reading from left to right, the length of one red rod is one-

fourth the length of a tan rod. The length of three red rods is then three-fourths the length 

of a tan rod (Figure 3c). Continuing with the pattern, the length of five red rods is five-

fourths the length of a tan rod. And so on. In sum, by comparing the length of two 

quantities—with one quantity considered as the unit of measure and used to measure the 

other quantity—is how a fraction gets its name. This understanding can be called a 

measuring perspective. 

The verbal statements associated with the rod configurations in Figure 3 have 

ways to be represented symbolically, using mathematical notation. For this purpose, each 

Cuisenaire rod can be expressed with the initial letter of its color name. Table 1 displays 

correspondences between the color of each rod and a letter to symbolize it. 

 
Table 1: From smallest (1 centimeter) to largest (10 centimeters), the Cuisenaire rods’ color-letter 

correspondence 

white red green purple yellow 
dark 

green 
ebony tan blue orange 

𝑤 𝑟 𝑔 𝑝 𝑦 𝑑 𝑒 𝑡 𝑏 𝑜 
Source: Author 

 

(a)  (b)  (c)  

http://dx.doi.org/10.33238/ReBECEM.2019.v.3.n.3.23846


DOI: http://dx.doi.org/10.33238/ReBECEM.2019.v.3.n.3.23846 

ReBECEM, Cascavel, (PR), v.3, n.3, p. 700-713, dez. 2019       706 

Below in Table 2, in the left column are listed the verbal statements associated 

with the rod configurations in Figure 3, and in the right column are the corresponding 

mathematical symbolic expressions. Some mathematical expressions correspond to more 

than one verbal statement. 

 

Table 2: Correspondence between verbal and symbolic expressions 

Expressions 

Verbal Symbolic 

1. The length of one of the tan rods equals the length of four of the red rods. 

2. When measured by red rods, the tan rod is equivalent to four red rods. 

3. One tan rod measures four red rods. 
𝑡 = 4𝑟 

4. A tan rod measured by red rods equals four. 
𝑡

𝑟
= 4 

5. The length of one red rod equals one-fourth the length of a tan rod. 

6. Red is one-fourth of tan. 𝑟 =
1

4
× 𝑡 

7. A red rod measured by tan rods equals one-fourth. 
𝑟

𝑡
=

1

4
 

Source: Author’s arquive 

 

Now, the case that precipitates the invention of fractions. When the ancient 

Egyptian surveyors wanted to know the extent of a distance 𝑑, in comparison to a unit of 

measure 𝑢, it was not always the case that 𝑑 was exactly 𝑘 units of measure 𝑢, where 𝑘 

is a whole number. That is, it is not guaranteed that 𝑑, measured by 𝑢 equals exactly 𝑘 ×

𝑢. For example, using Cuisenaire rods, consider the length of the purple rod to be the unit 

of measure. What is the measure of the length of the orange rod? In Figure 4a, an orange 

rod does not exactly measure a whole number of times the length of purple rods. It equals 

two purple and less than another purple rod. Do the length of a purple rod and the length 

of an orange rod measure a whole number of times the length of another rod? As shown 

in Figure 4b, a purple rod equals two red rods. One red rod, a portion of the purple rod, is 

exactly the length that completes the measure of the orange rod (Figure 4c). From Figure 

4c it can be determined that an orange rod equals five red rods. Therefore, the red rod is 

a common subunit of both the orange and purple rods. Since the purple rod is the unit and 

equals the length of two of the red rods, the length of a red rod is one-half of the length 

of a purple rod. Also, the red can be called a subunit of the purple rod. In conclusion, 

when measured by a purple rod and its subunit, the length of an orange rod measures the 

length of two and one-half of the length of a purple rod. The conclusion in mathematical 
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notation is this: 𝑜 = 2 × 𝑝 +
1

2
× 𝑝, 𝑜 = 2 × 𝑝 +

1

2
× 𝑝, or, since each purple rod equals 

two red rods, this: 𝑜 =
5

2
× 𝑝. 

 

Figure 4:  Measuring the length of the orange rod with the purple rod as the unit of measure 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s arquive 

 

Using Cuisenaire rods, the factional name of a rod’s length can be derived using 

any rod as the unit of measure. For instance, determine the name of the length of an ebony 

rod measured by a yellow rod. Use the yellow rod to measure the length of a white rod 

(Figures 5a and 5b). Here, the white rod is used as a subunit of the yellow rod, and its 

length equals one-fifth of a yellow rod’s length, which is written as 𝑤 =
1

5
× 𝑦. Since 

seven white rods measure the length of an ebony rod, the white rod is also a subunit of 

the ebony rod (Figure 5c). A yellow rod is five-sevenths of an ebony rod (Figure 5d), and 

inversely, its length is seven-fifths of a yellow rod (Figure 5e). Respectively, these verbal 

expressions are symbolized as follows: 𝑦 =
5

7
× 𝑒 and 𝑒 =

7

5
× 𝑦. 

 

Figure 5: (a) 𝑦 = 5𝑤. (b) 𝑤 = 1

5
× 𝑦, (c) 𝑦 =

5

7
× 𝑒, and (d) 𝑒 = 7

5
× 𝑦 

 

 

 

 

 

 

 

 

 

 

Source: Author’s arquive 

 

In general, if 𝑑 does not equal an exact multiple of 𝑢, then there may exist a 

common subunit of measure, 𝑣, of both 𝑑 and 𝑢. If this is the case, then 𝑑 equals exactly 

𝑚 subunits of 𝑣, and 𝑢 equals exactly 𝑛 subunits of 𝑣. Since 𝑢 = 𝑛 × 𝑣, the length of 𝑣 

(a)   (b)  (c)  

(a)  (b)  (c)  (d)  (e)  
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equals one-𝑛th the length of 𝑢: 𝑣 =
1

𝑛
× 𝑢. Also, since 𝑑 = 𝑚 × 𝑣, the length of 𝑣 also 

equals one-𝑚th the length of d: 𝑣 =
1

𝑚
× 𝑑. Thus, as 𝑑 equals exactly 𝑚 subunits of 𝑣, it 

also equals 𝑚 of 
1

𝑛
× 𝑢 or 𝑚 ×

1

𝑛
× 𝑢 =

𝑚

𝑛
× 𝑢, which implies 𝑑 =

𝑚

𝑛
× 𝑢. This expression 

represents a multiplicative comparison between the two quantities 𝑑 and 𝑢. 

The fact that there is a multiplicative comparison between the lengths 𝑑 and 𝑢 

means that the two lengths are commensurable. In mathematics, the commensurability of 

two different quantities such as lengths, 𝑋 and 𝑌, indicates that they have a common unit 

of measure. Possessing a standard unit means that there is a third length, 𝑍, less than or 

equal to the smaller of 𝑋 and 𝑌, such that when placed end-to-end a whole number of 

times creates a length equal to 𝑋 (Figure 6a). Similarly, when 𝑍 is placed end-to-end a 

different whole number of times, it creates a length equal to 𝑌 (Figure 6b). The ratio of 𝑋 

and 𝑌—𝑋/𝑌—is a fraction. 

 
Figure 6: Lengths 𝑋 and 𝑌 have 𝑍 as a common unit of measure, and, therefore, are commensurate 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s arquive  

 

Sometime after the Egyptians invented fractions and a notation for them,4 the 

ancient Greeks discovered that such ratios of lengths were not always commensurable 

(STRUIK, 1948/1967), meaning measurable by the same unit, leading to the discovery of 

irrational numbers.5 

Based on this measuring perspective, a fraction is defined as a multiplicative 

comparison between two commensurable quantities of the same kind. 

 

 

 

 

                                                           
4 See Ifrah (1981/1998) or Roque (2012) for information about how ancient Egyptians symbolized fractions. 
5 For discussions about irrational numbers and reflections concerning the mathematics classroom, see 

Broetto and Santos-Wagner (2017). 

6𝑍 

(a)  
𝑋 

3𝑍 

(b)  
𝑌 
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4 Concluding considerations 

 

This definition is derived from a historical understanding of the emergence of 

fractional numbers and the mathematical implications of measuring lengths for an 

understanding of rational and irrational numbers. In the ancient past, the material 

conditions evolved and necessitated language to describe magnitudes whose measures 

were greater than a whole number but less than its successor. With fractions, these 

magnitudes of length could more precisely be quantified. Commenting on its cognitive 

usefulness for mathematics learning, Carraher (1993) observes that “[l]ength, more so 

than other quantities, expresses magnitude directly and unambiguously. A student can 

straightforwardly compare two lengths through visual inspection” (p. 284). 

Mathematics education researchers such as Carraher (1993) and Gattegno 

(1974/2010) have observed that the comparison of length, a continuous quantity, is 

conceptually straightforward. This view corresponds to recent results in cognitive 

neuroscience. There is increasing evidence that humans have an innate capacity to discern 

the relative magnitude among ratios of nonsymbolic continuous quantities 

(MATTHEWS; ZIOLS, 2019). Functional neuroimaging studies have consistently 

identified overlap brain regions involved in comparing nonsymbolic ratios and symbolic 

fractions (JACOB; NIEDER, 2009; MOCK et al., 2019; MOCK et al., 2018). As 

Matthews and Ellis (2018) and Matthews and Ziols (2019) underscore, this nonsymbolic 

capacity to discriminate magnitudes of continuous ratios remains to be recruited and 

investigated in the context of fraction instruction. Such an investigation is facilitated with 

a measuring perspective to fraction knowledge (POWELL, 2019). 

The measuring perspective has several theorized mathematical and cognitive 

outcomes worth underscoring. It can instigate in students the following mathematical and 

cognitive awarenesses: 

 When the quantity to be measured is not a whole-number multiple of the 

unit of measure, the need for a subunit of measure that is commensurable with both the 

unit of measure and the quantity to be measured; 

 Lengths can be expressed as improper fractions or mixed numbers; 

 The magnitude of a quantity can be expressed by different fractional 

numbers as a consequence of different units of measure; 
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 For a given length, different units of measure yield different measures—

the smaller the magnitude of the unit, the larger the measure; and 

 Contrary to the partitioning perspective—where the act of counting parts 

of a single quantity suggests an additive relation—a fraction is a multiplicative relation 

between two commensurable quantities; the relation is comparison. 

The first two of these awarenesses provide insights into a definition of a fraction 

from a measuring perspective. The definition can be formulated in two parts, defining 

first a unit fraction and then a general fractional number: 

For a given unit of measure and whole number 𝑏, the symbolic expression 
1

𝑏
 is a 

unit fraction and represents the length of a quantity. When this quantity is iterated 𝑏 times, 

the result is a length that is equal to the unit of measure. More generally, for a given unit 

of measure and whole numbers 𝑎 and 𝑏, the expression 
𝑎

𝑏
 represents a fraction whose 

magnitude equals the length 
1

𝑏
 iterated 𝑎 times. 

In this definitional statement, the term ‘length’ can be replaced by any other 

measurable attribute of a quantity such as area, volume, mass, or time. For fractions as 

abstract numbers, the statement is as follows:  

For a given unit and whole number 𝑏, the symbolic expression 
1

𝑏
 is a unit fraction 

and represents a number. When it is iterated 𝑏 times, the resulting number equals the unit. 

More generally, for a given unit and whole numbers 𝑎 and 𝑏, the expression 
𝑎

𝑏
 represents 

a fraction whose magnitude equals 
1

𝑏
 iterated 𝑎 times. 

In classroom-based studies, the need surfaces naturally for a lexical item to name 

the magnitude of a subunit of measure (POWELL, 2019). The subunit facilitates 

measuring and naming and eventually symbolizing the measure of the length when it is 

not an exact multiple of the unit of measure. 

Finally, here is one way to initiate a measuring-perspective module on how a 

fraction gets its name. A start is to engage students in measuring the length of different 

objects available in a classroom. It may be necessary to convey the meaning of length as 

an attribute of objects and to clarify that measuring is a process to ascertain a count of 

how many iterations of a unit of measure equal an object’s length. The unit of measure 

can be the students’ choice. The class can discuss the inconsistent measures of an object’s 

length for varying units of measure and the efficacy of different units of measure given 

the extent of a particular length. Besides everyday objects, students can later be given 
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Cuisenaire rods, so that they work in pairs to practice measuring the length of objects 

such as the sides of their desks. Students may benefit from discussing the relationship 

between the size of a unit of measure and the number of iterations it requires to measure 

a specific length. They may converge on the need to have a standard unit of measure and 

to have a name for the part that remains when the length of an object is not an exact 

multiple of the unit of measure.  
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