Revista Varia Scientia v. 04, n. 08, p. 113-120

ARTIGOS & ENSAIOS

Marisa Alves Nogueira¹ Aline Minetto²

CONTROLE DE QUALIDADE DE CHÁS DE CAMOMILA (MATRICARIA RECUTITA L.) COMERCIALIZADOS NA CIDADE DE CASCAVEL E REGIÃO

RESUMO: Matricaria recutita, conhecida até pouco tempo como Matricaria chamomilla, é muito popular pelos seus efeitos antiinflamatórios, sendo muito utilizada pela população em geral, necessitando por isso de um controle de qualidade mais rigoroso. Neste trabalho, analisou-se a qualidade desta planta medicinal por métodos farmacognósticos simplificados. Os resultados apontaram que 70% das amostras podem ser utilizadas para a finalidade farmacoterapêutica, e que 30% das amostras não poderiam ser usadas para este fim, já que apresentam, principalmente, teor de óleo essencial abaixo do teor especificado na literatura.

PALAVRAS-CHAVE: Matricaria recutita; Óleo essencial; Camazuleno.

ABSTRACT: Chamomile, scientifically named *Matricaria recutita* L., is a renowned plant used worldwide due to its antinflamatory effects. For this reason, it is necessary to implement a more rigorous quality control system. The quality of this medicinal plant was analyzed by using simplified farmacognostic methods. The obtained results pointed out that 70% of the analyzed samples can be used as a medicine and 30% of the samples analyzed are not appropriate for medicinal use, mainly because their content of essential oil is below than the content specified in the literature.

KEYWORDS: Matricaria recutita; Essential oils; Chamazulene.

Data de recebimento: 02/09/04. Data de aceite para publicação: 18/03/05.

¹ Farmacêutica. Docente do Centro de Ciências Médicas e Farmacêuticas. Unioeste

⁻ Campus de Cascavel. Endereço eletrônico: manogueira@unioeste.br.

² Farmacêutica.

1. INTRODUÇÃO

A Matricaria recutita, conhecida até pouco tempo como Matricaria chamomilla, é uma planta de origem africana, tendo sido introduzida no Sul do Brasil há mais de 100 anos pelos imigrantes europeus. Na fitoterapia é usada, por via oral, sob a forma de infuso e por via tópica sob a forma de compressas (BOTTCHER et al., 2001). É muito utilizada na medicina popular, principalmente pela sua ação antiinflamatória devido à presença das substâncias camazuleno e a-bisabolol, sendo que a primeira confere à planta um maior poder antiinflamatório do que o a-bisabolol, já que o camazuleno é considerado o responsável pelo bloqueio da enzima ciclo-oxigenase na biossíntese da prostaglandina (DEWICK, 1997). Cabe salientar que, nas infusões, não existe camazuleno. Dessa maneira, permanece somente o a-bisabolol como o principal componente com atividade antiinflamatória. O camazuleno apresenta cor azul intensa, sendo encontrado em quantidades apreciáveis no óleo essencial da camomila, mas não nas flores, pois é formado a partir da matricina durante o processo de destilação. São encontrados ainda, dentre os componentes do óleo essencial, terpenos como (-) a-bisabolol, óxido de bisabolol e cumarinas, como a umbeliferona e herniarina (BRUNETON, 1991) (cf. Figura 1).

FIGURA 1 - Constituintes químicos encontrados na camomila (*Matricaria recutita*).

A camomila ou matricária às vezes é confundida com *Anthemis nobilis* (EVANS, 1996), também chamada camomila romana, pois apresenta características botânicas muito semelhantes à *M. recutita*, porém a espécie *A. nobilis* apresenta apenas traços de camazuleno, por isso tem sido recomendada a comercialização dos medicamentos a partir somente das espécies de camomila, já que são elas as que apresentam maior teor deste constituinte. Desta maneira, faz-se necessário o controle de qualidade mais rigoroso do produto, evitandose assim falsificação com esta espécie.

2. MATERIAL E MÉTODOS

As amostras de camomila utilizadas nos ensaios foram adquiridas em farmácias de Cascavel e região. Estas amostras são comercializadas na forma de sachês em embalagens pesando de 10 a 15 g. No total foram analisadas dez marcas de chás de camomila, sendo estas as mais comercializadas, cujos nomes de fantasia foram substituídos pelas letras A, B, C, D, E, F, G, H, I e J. Os ensaios utilizados foram aqueles preconizados na Farmacopéia (1988), tais como descrição macroscópica, teor de óleo essencial, determinação da perda por dessecação, teor de sujidade e teor de cinzas totais. A cromatografia em camada delgada foi realizada em cromatofolhas de alumínio silicagel GF254 0,2 nm Art. 1.05554 Merck visualizadas sob lâmpada de UV no comprimento de onda 366 nm e reveladas com solução de anisaldeído/ácido acético modificado, por nebulização, seguida de aquecimento.

2.1 Análise Estatística

Os valores foram obtidos a partir da média de três ensaios, realizados para cada uma das amostras de chás, e foram expressos em porcentagem (% p/p). O intervalo de confiança para cada média foi calculado pela equação:

$$(\cancel{x} \pm dp \ \frac{t}{\sqrt{n}})$$

Aplicou-se o teste t de Student com um nível de significância de 0,05.

2.2 Descrição Macroscópica

Para a determinação macroscópica pesou-se 1 g de cada amostra e observou-se, com auxílio de um microscópio estereoscópico binocular, por meio de observação direta, a presença de capítulos florais longamente cônicos, com flores marginais liguladas em número de 10 a 20 e, em geral, com 6 a 9 mm de comprimento, apresentando-se com a lígula branca, elíptica, oblonga, tridenteada no vértice e percorrida por quatro nervuras.

2.3 Determinação de Materiais Estranhos

Para a determinação de materiais estranhos pesou-se 1 g de cada amostra, analisado macroscopicamente com auxílio de um microscópio estereoscópico. Em cada amostra separou-se a sujidade realizando a classificação em fragmentos da mesma planta, insetos, partes de outras plantas e presença de terra e pedras.

2.4 Determinação do Teor de Cinzas Totais

Para determinar o teor de cinzas utilizaram-se cadinhos previamente calcinados e tarados. Pesou-se 1 g de cada amostra, em cada cadinho, e levou-se à mufla, à temperatura de 500°C até a formação de cinzas brancas; a seguir deixou-se esfriar em estufa por 20 minutos, e transferiu-se para um dessecador por mais 20 minutos; pesaram-se os cadinhos com as cinzas. Repetiu-se a pesagem até obter peso constante.

2.5 Determinação da Perda por Dessecação

Para determinação da umidade utilizaram-se pesa-filtros previamente calcinados e tarados. Em cada pesa-filtro pesaram-se 2 g de cada amostra; as amostras foram levadas à estufa, à temperatura de 105°C, por um período de cinco horas. A seguir foram colocadas em dessecador por uma hora. Repetiu-se o procedimento até peso constante.

2.6 Doseamento do Óleo Essencial

Para determinar o teor de óleo essencial das inflorescências de camomila procedeu-se à destilação por arraste de vapor d'água através de aparelho do tipo Clevenger, utilizando-se a técnica II da Farmacopéia (1988) com 10 a 20 g de camomila e destilando-se por quatro horas. Para que não houvesse dúvida quanto à composição de óleo, usou-se também uma amostra padrão de *M. recutita*.

2.7 Identificação Cromatográfica do Óleo Essencial

Para a identificação dos compostos empregou-se a técnica de CCD (Cromatografia em Camada Delgada), utilizando-se como fase móvel tolueno/acetato de etila 93:07. O cromatograma foi desenvolvido num percurso de 10 cm. Deixou-se a fase móvel evaporar ao ar por cinco minutos, observou-se em câmara de UV a 366 nm. A seguir, a placa foi nebulizada com revelador anisaldeido/ácido acético modificado e aquecido em estufa por três minutos a 80°C. Calculou-se o valor de Rf das bandas visualizadas comparando-os com os valores especificados na Farmacopéia (1988).

3. RESULTADOS E DISCUSSÃO

3.1 Descrição Macroscópica

Em cada amostra observou-se a presença de capítulos florais longamente cônicos, com flores marginais liguladas em número de 10 a 20, caracterizando que as amostras pertenciam à espécie *M. recutita*.

3.2 Determinação de Materiais Estranhos

De acordo com as especificações da Farmacopéia (1988), uma amostra de camomila deve ter no máximo 5% de materiais estranhos. A Tabela 1 mostra os resultados obtidos na análise das 10 amostras.

TABELA 1 - Resultados obtidos nos testes de sujidade, cinzas totais,
perda por dessecação e óleo essencial das várias marcas de chás
de camomila comercializados em Cascavel e Região

amostras	Sujidad e (%) (max 5 %*)	Cinzas totais (%) (max. 14 %*)	Perdapor dessecação (%) (8 a 14 %*)	Óleo Essencial (%) (0,4 a 1,8 %)
A	28,23 ± 0,53	7,8 ± 0,18	12,2 ± 0,30	0,5
В	20,77 ± 0,50	8,7 ± 0,30	12,5 ± 0,63	0,5
c	15,42 ± 0,25	15,4 ± 0,35	9,4 ± 0,88	0,5
D	56,19 ± 0,50	14,8 ± 0,12	10,4 ± 1,26	0,33
E	50,70 ± 1,35	7,9 ± 0,25	9,1 ± 0,18	0,4
F	40,16 ± 0,25	8,5 ± 0,39	12,6 ± 0,41	0,33
G	15,90 ± 1,49	8,5 ± 1,08	10,4 ± 1,12	0,5
H	27,46 ± 1,18	7,8 ± 0,50	10,9 ± 0,66	1,0
I	14,78 ± 0,66	8,5 ± 0,25	9.3 ± 1.18	1,13
J	46,05 ± 0,73	9,8 ± 0,50	11,0 ± 0,72	0,2
Padrão	2,0 ± 0,53	10,0 ± 0,40	9,0 ± 0,25	1,0

^{*} Médias de três ensaios.

A partir da análise dos dados da Tabela 1, verifica-se que todas as marcas de chás analisadas estão fora dos padrões aceitáveis de contaminação, e que o material estranho mais encontrado é representado principalmente por partes da própria planta que não inflorescências.

3.3 Determinação do Teor de Cinzas Totais

A Farmacopéia (1988) indica que o teor máximo de cinzas totais para uma amostra de camomila é de 14%. A Tabela 1 mostra os resultados obtidos na análise das dez amostras de chás. A partir dos resultados mostrados pela tabela, constata-se que 80% das amostras analisadas estão dentro das especificações exigidas pela Farmacopéia (1988) para controle de qualidade, e apenas 20% mostraram teor de cinzas maiores que os recomendados.

3.4 Determinação da Perda por Dessecação

De acordo com a Farmacopéia (1988), o teor ideal para a perda por dessecação de uma amostra de planta é de 8 a 14%. A Tabela 1 mostra os resultados obtidos nesta análise para com as dez amostras de *M. recutita*. De acordo com os resultados obtidos, todas as amostras analisadas se mostraram satisfatórias quanto à perda por dessecação,

garantindo que a secagem foi eficiente para a conservação das plantas.

3.5 Doseamento do Óleo Essencial

De acordo com a Farmacopéia (1988), o teor mínimo de óleo essencial deve ser de 0,4%. Outros autores, como BRUNETON (1991), afirmam que o teor de óleo essencial pode variar de 0,2 a 1,8%, para que a camomila possa exercer sua ação farmacológica. A Tabela 1 mostra os resultados obtidos com o doseamento do óleo essencial para cada uma das amostras analisadas. Analisando-se a tabela e tendo como base as especificações da Farmacopéia (1988), observou-se que 30% das amostras estão abaixo do teor especificado, 50% das amostras apresentaram teor mínimo e apenas 20% estão com teor dentro das especificações. Os baixos teores de óleos essenciais encontrados na maioria das marcas podem ser conseqüência dos altos teores de sujidades verificados anteriormente.

3.6 Identificação Cromatográfica do Óleo Essencial

A identificação foi feita com base nos valores de Rf encontrados na cromatografia de CCD e comparados com aqueles descritos na Farmacopéia (1988) (cf. Tabela 2 e Figura 2). De acordo com os valores de Rf obtidos, pode-se afirmar que as amostras estão dentro das especificações da Farmacopéia (1988). Pode-se sugerir ainda que as amostras apresentam óxido de bisabolol, herniarina e éter cíclico.

As pequenas variações dos valores de Rf obtidos das amostras, quando comparados com os valores citados pela Farmacopéia (1988), devem-se possivelmente ao grau de saturação da cuba e às condições climáticas quando da realização do experimento.

TABELA 2 - Valores de Rf para as amostras de óleos essenciais das várias marcas de chás de camomila comercializados em Cascavel e região

RFS AMOSTRAS	RFS FARMACOPÉIA BRAS (4. ed.)		
0,23-0,24	0,25 Óxido de Bisabolol		
0,30-0,33	0,35 Hemiarina		
0,60-0,62	0,6 Éter cíclico poli-eno, ino		

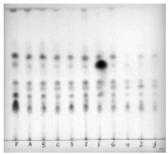


FIGURA 2 - Cromatograma das amostras de óleos essenciais das várias marcas de chás de camomila comercializadas em Cascavel e região.

4. CONCLUSÃO

A partir dos resultados obtidos e levando-se em consideração o doseamento de óleo essencial, conclui-se que as marcas A, B, C, E, G, H e I, podem ser utilizadas para a finalidade farmacoterapêutica, apesar de possuírem alto teor de sujidade e as marcas D, F, J, não poderiam ser usadas para este fim, já que apresentam, principalmente, teor de óleo essencial abaixo do especificado pela Farmacopéia (1988). Todas as amostras analisadas continham *M. recutita* como especificado nas embalagens, não sendo encontradas adulterações com a espécie *A. nobilis*.

5. REFERÊNCIAS

BRUNETON, J. **Fitoquimica y farmacognosia**. Zaragoza: Acribia, 1991. DEWICK, P. M. **Medicinal natural products**. Canada: John Wiley & Sons, 1997.

EVANS, W. C. **Pharmacognosy**. 40. ed. London: Saunders, 1996. FARMACOPÉIA brasileira. 4. ed. São Paulo: Atheneu, 1988. BOTTCHER. H.; GUNTHER, I.; FRANKE, R.; WARNSTORFF, K. "Physiological postharvest responses of Matricaria (*Matricaria recutita L.*) flowers". **Postharvest biology and technology**. England. v. 22, p. 39–45, 2001.

Unioeste
Universidade Estadual do Oeste do Paraná
Pró-Reitoria de Pesquisa e Pós-Graduação
— www.unioeste.br —
REVISTA VARIA SCIENTIA
Versão eletrônica disponível na internet:
www.unioeste.br/saber

