Effect of activates versus passive recovery in program of anaerobic exercises prevalence

Authors

  • Dartel Ferrari de Lima Universidade Estadual do Oeste do Paraná (Unioeste), Marechal Cândido Rondon
  • Maria das Graças Anguera Lima Universidade Estadual do Oeste do Paraná (Unioeste), Marechal Cândido Rondon
  • Rene Anguera Lima Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel

DOI:

https://doi.org/10.36453/cefe.2008.v7.i12.p15

Keywords:

Anaerobic exercise, Active recovery, Passive recovery

Abstract

Fatigue carries out an important reduction in (motor) performance. The period of recovery greatly contributes to the restoration of the energetic routes and in the biochemical balance tissue, slowing or making pleasant the effects of fatigue. Thus, the goal (aim) of this work was to investigate the recovery behaviour changes during the repeated series of high intensity effort and of short duration. There were set two different ways of recovery: the active recovery and the passive recovery, between the physical work ranges consisted by six repetitions of 50-meter-run with the maximal possible speed. There were used six male amateur runners (age 19.67 ± 1.63 years, weight 74.33 ± 5.2 kg and height 1.77 ± 0.71 meters). The average time consumed in the six trials was 6.74 ± 0.48 seconds and 6.89 ± 0.51 seconds, when used the active recovery and the passive recovery protocols, respectively. The spent time to run (travel through) the distance unit for each interval presented growth trend. The increase was significatly lower during the protocol of active recovery. In this study, the speed change could not be explained by blood lactate values.

Downloads

References

ASTRAND, P.; RODHAL, K. Tratado de Fisiologia do Exercício. Rio de Janeiro: Interamericana, 1980.

BANGSBO, J. Physical demands of soccer. London: Blackwell Scientific, p. 43-59, 1994.

BROOKS, G. A.; FAHEY, T. D.; WHITE, T. P. Exercise Physiology: Human bioenergetics and its applications. Mayfield Pub. Company, Toronto: WCB McGraw-Hill, 1998.

FOSS, M. L.; KETEYAN, S. J. Fox’s. Physiological basis for exercise and sport. Journal of Applied Physiology, n. 62, p. 323-337, 1998.

FOXDAL, P.; SJODIN, B.; SJODIN, A.; OSTMAN, B. The validity & accuracy of blood lactate testing. International Journal of Sports Medicine, v. 15, p. 89-95, 1994.

HAGBERG, J. Physiological implications of the lactate threshold. American Journal of Sports Medicine, p. 106-109, 1984.

HARRIS, J.; DUDLEY, G. Exercise alters the distribution of Lactate in the blood. Journal of Applied Physiology, v. 66, p. 313-317, 1989.

KESKINEN, K.; KOMI, P.; RUSKO, H. Lactic Acid evaluation in energy contribution. International Journal of Sports Medicine, v. 10, p. 197-201, 1989.

MACDOUGALL, J. C.; WENGER, H. A.; GREEN, H. J. Evaluación fisiológica del esportista. Barcelona: Paidotribo, p. 249-267, 1995.

MACDOUGALL, J. C.; WENGER, H. A.; GREEN, H. J. Physiological Testing of the High-Performance Athlete. Human Kinetics, 1994.

MARIEB, E. Human Anatomy and Physiology. Amsterdam: Benjamin Cummings, 1992.

MASINI, E. et al. Histamine and lactate dehydrogenase (LDH) release in ischemic myocardium of the guinea-pig. Agents and Actions, v. 20, n. 3/4, p. 281-283, 1987.

MAUD, P. J.; FOSTER, C. Physiological assessment of human fitness. Champaign: Human Kinetics, p. 9-17; 37-72, 1995.

MURRAY, R. H. Bioquímica. São Paulo: Atheneu, 1998.

MYBURGH, K.; VILJOEN, A.; TEREBLANCHE, S. Plasma lactate concentrations for self-selected maximal effort lasting 1 h. Medicine & Science in Sports & Exercise, v. 33, n. 1, p. 152-156, 2001.

PALMER, A.; POTTEIGER, A.; NAU, K.; TONG, R. A 1-day self-maximal lactate steady-state assessment protocol. American Journal of Sports Medicine, v. 31, n. 9, p. 1336-1341, 1999.

RENSTROM, P. A. Sports Injuries: basic principles of prevention and care. Oxford: Blackwell Scientific, p. 262-276, 1993.

ROBERGS, R. A.; ROBERTS, S. O. Exercise Physiology: exercise, performance and clinical applications. St. Louis: Mosby, 1997.

ROTH, D. A.; BROOKS, G. A. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Archives of Biochemistry and Biophysics, v. 279, n. 2, p. 386-394, 1990.

SUBRAMANIAN, N.; NANDI, B. K.; MAJUNDER, A. K.; CHATERJEE, I. B. Role of L-ascorbic acid on detoxification of histamine. Biochemical Pharmacology, v. 22, p. 1671-1673, 1973.

THIN, L. Lactate determination in exercise testing using analyzers. European Journal of Applied Physiology, v. 79, n. 2, p. 155-159, 1999.

WELTMAN, A. The blood lactate response to exercise. Medicine & Science in Sports & Exercise, n. 32, p. 120-125, 1995.

Published

10-03-2008

How to Cite

LIMA, D. F. de; LIMA, M. das G. A.; LIMA, R. A. Effect of activates versus passive recovery in program of anaerobic exercises prevalence. Caderno de Educação Física e Esporte, Marechal Cândido Rondon, v. 7, n. 12, p. 15–22, 2008. DOI: 10.36453/cefe.2008.v7.i12.p15. Disponível em: https://e-revista.unioeste.br/index.php/cadernoedfisica/article/view/1793. Acesso em: 26 mar. 2025.