Questões do PISA envolvendo função afim
uma análise na perspectiva da teoria dos campos conceituais
DOI:
https://doi.org/10.48075/ReBECEM.2023.v.7.n.3.30984Palavras-chave:
PISA, Teoria dos Campos Conceituais, Estruturas Aditivas, Estruturas Multiplicativas, Função AfimResumo
O objetivo deste artigo é identificar e classificar as questões de Matemática em uma prova do Programa Internacional de Avaliação de Estudantes, que podem ser modeladas por uma função afim, à luz da Teoria dos Campos Conceituais (TCC). O aporte teórico é composto pela TCC, especificamente, os campos conceituais aditivo e multiplicativo, e problemas mistos, de Gérard Vergnaud. O corpus da investigação contém 29 situações, descritas por meio de uma função afim ou linear, da prova de 2012, última edição que priorizou a Matemática, e disponibilizou suas questões para o público geral. As situações foram resolvidas e classificadas com base na TCC e nos problemas mistos. Constatou-se que o conceito de função afim é pouco demandado pelo PISA. Observou-se no corpus a prevalência das situações da classe de proporção simples, no campo multiplicativo; comparação multiplicativa e composição de medidas, seguida da proporção simples e composição de medidas, nos problemas mistos.
Downloads
Referências
BRASIL. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Brasil no PISA 2018 [recurso eletrônico]. – Brasília: Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira, 2020.
GITIRANA, V.; CAMPOS, T. M. M.; MAGINA, S.; SPINILLO, A. Repensando Multiplicação e Divisão: Contribuição da Teoria dos Campos Conceituais. 1. ed. São Paulo: PROEM, 2014.
GIL, A. C. Como elaborar projetos de pesquisa. 7. ed. São Paulo: Atlas, 2002.
JOLANDEK, E. G.; PEREIRA, A. L.; MORAES, J. C. P.; MENDES, L. O. R. Vertentes sobre avaliação em larga escala e política educacional: possíveis lacunas à se preencher. Revista Valore, [S.l.], v. 3, p. 390-402, dez. 2018.
JOLANDEK, E. G.; PEREIRA, A. L.; RODRIGUES MENDES, L. O. Avaliação em larga escala e currículo: relações entre o PISA e a BNCC. Com a Palavra, o Professor, [S. l.], v. 4, n. 10, p. 245–268, 2019.
LIAO, T.; MOTTA, M. S.; FERNANDES, C. O. Avaliando o “PISA” de Matemática. Revista Eletrônica de Educação Matemática, Florianópolis, v. 16, p. 01-20, jan./dez. 2021.
LIMA, R. L. Avaliação em Geometria no PISA 2012: Uma análise do conteúdo e dos itens disponibilizados pelo INEP. 2016. 116 f. Dissertação (Mestrado em Educação, Cultura e Comunicação em Periferias Urbanas) – Universidade do Estado do Rio de Janeiro, Duque de Caxias, 2016.
LIMA, P. V. P.; MOREIRA, G. E.; VIEIRA, L. B.; ORTIGÃO, M. I. R. Brasil no Pisa (2003-2018): reflexões no campo da Matemática. TANGRAM - Revista de Educação Matemática, Dourados, v. 3, n. 2, p. 3–26, 2020.
LIMA, P. V. P.; MOREIRA, G. E. O programa internacional de avaliação de estudantes: a avaliação de matemática e o cenário brasileiro. Regae - Revista de Gestão e Avaliação Educacional, Santa Maria, v. 11, n. 20, p. 1–22, 2022.
MIRANDA, C. A. Situações que envolvem o conceito de função afim: uma análise à luz da teoria dos campos conceituais. 2019. 161 f. Dissertação (Mestrado em Educação em Ciências e Educação Matemática) – Universidade Estadual do Oeste do Paraná, Cascavel, 2019.
ORTIGÃO, M. I. R.; SANTOS, M. J. C.; LIMA, R. L. Letramento em Matemática no PISA: o que sabem e podem fazer os estudantes?. Zetetiké, Campinas, v.26, n.2, p.375-389, mai./ago. 2018.
PEREIRA, C. M. M. C.; MOREIRA, G. E. Brasil no Pisa 2003 e 2012: os estudantes e a matemática. Cadernos de Pesquisa, São Paulo, v. 50, n. 176, p. 475-493, 2020.
SILVA, A. F; HOED, R. M; SARAIVA, P. F. Comparação entre a educação brasileira e a de países com bons resultados no exame do PISA: um estudo a partir da Talis. Revista Foco, [S. l.], v. 16, n. 2, p. 1-29, 2023.
TIEPPO, S. M.; CAPPELIN, A.; ZANATTA, L. F.; NOGUEIRA, C. M. I.; REZENDE, V. Um panorama de situações do tipo misto em provas do Exame Nacional do Ensino Médio. Ciência & Educação (Bauru), v. 29, p. 1-17, 2023.
VERGNAUD, G. A classification of cognitive tasks and operations of thought involved in addition and subtraction problems. In: CARPENTER, T. P.; MOSER, J. M.; ROMBERG, T. A. Addition and subtraction: a cognitive perspective. 1. Ed. New Jersey: Lawrence Erbaun, p. 39-59, 1982.
VERGNAUD, G. Multiplicative structures. In: R. LESH; LANDAU, M. (Eds.), Acquisition of math concepts and processes. 1. ed. London: Academic Press, 1983, p. 127-174.
VERGNAUD, G. A teoria dos campos conceituais. In: BRUN, J. Didáctica das matemáticas. 1. ed. Lisboa: Instituto Piaget, p. 155-191, 1996. Trad. Maria José Figueiredo
VERGNAUD, G. A criança, a matemática e a realidade: problemas do ensino da matemática na escola elementar. 1 ed. Curitiba: UFPR, 2014.
WERLE, F. O. C. Políticas de avaliação em larga escala na educação básica: do controle de resultados à intervenção nos processos de operacionalização do ensino. Ensaio: avaliação e políticas públicas em educação, Rio de Janeiro, v. 19, n. 73, p. 769-792, dez. 2011.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Sandra Maria Tieppo, Clélia Maria Ignatius Nogueira, Marli Schmitt Zanella
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.2. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
Licença Creative Commons
Esta obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional, o que permite compartilhar, copiar, distribuir, exibir, reproduzir, a totalidade ou partes desde que não tenha objetivo comercial e sejam citados os autores e a fonte.